Untertitel:
A unified Hilbert Space Approach
Verlag:
DE GRUYTER
Erschienen:
30.06.2011
Seitenanzahl:
487
ISBN:
3110250276
EAN:
9783110250275
Sprache:
Englisch
Format:
PDF
Schutz:
Adobe-DRM

Partial Differential Equations

Des McGhee / Rainer Picard


210,00 €
inkl. 7% MwSt.
 mit Adobe-DRM


<p>This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev lattice structure, a simple extension of the well-established notion of a chain (or scale) of Hilbert spaces. </p> <p>The focus on a Hilbert space setting (rather than on an apparently more general Banach space) is not a severe constraint, but rather a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations. </p> <p>In contrast to other texts on partial differential equations, which consider either specific equation types or apply a collection of tools for solving a variety of equations, this book takes a more global point of view by focusing on the issues involved in determining the appropriate functional analytic setting in which a solution theory can be naturally developed. Applications to many areas of mathematical physics are also presented. </p> <p>The book aims to be largely self-contained. Full proofs to all but the most straightforward results are provided, keeping to a minimum references to other literature for essential material. It is therefore highly suitable as a resource for graduate courses and also for researchers, who will find new results for particular evolutionary systems from mathematical physics.<br></p>

Bitte wählen Sie ihr Ursprungsland aus: